You're describing a chemical compound, specifically a thiourea derivative. Let's break down its structure and potential significance in research:
**Structure:**
* **1-(4-bromo-2-chlorophenyl)-3-[[oxo(pyridin-4-yl)methyl]amino]thiourea:** This name tells us the compound's structure:
* **Thiourea:** The core structure, containing a sulfur atom double-bonded to a nitrogen atom.
* **1-(4-bromo-2-chlorophenyl):** A phenyl ring (benzene ring) with a bromine atom at the 4-position and a chlorine atom at the 2-position. This is attached to the first nitrogen of the thiourea.
* **3-[[oxo(pyridin-4-yl)methyl]amino]:** A pyridin-4-yl group (a pyridine ring with nitrogen at position 4) attached to a carbonyl group (C=O) and a methyl group (CH3). This whole unit is attached to the second nitrogen of the thiourea.
**Potential Importance for Research:**
This compound is likely a synthetic molecule, not a naturally occurring one. Therefore, its importance lies in its potential applications, which could be in various fields:
* **Pharmacology:**
* **Drug discovery:** Thioureas are known to possess biological activities. This specific compound could be investigated for its potential as a drug candidate.
* **Pharmacokinetic studies:** Understanding how the compound is absorbed, distributed, metabolized, and excreted (ADME) is crucial in drug development.
* **Materials Science:**
* **Polymer synthesis:** Thiourea derivatives can be used as monomers in the synthesis of polymers with potential applications in coatings, adhesives, and more.
* **Analytical Chemistry:**
* **Reagents and probes:** This compound might be useful as a reagent or probe for detecting specific analytes or reactions.
* **Biochemistry:**
* **Enzyme inhibitors:** Thioureas can act as inhibitors of certain enzymes. This compound could be investigated for its ability to inhibit specific enzymes involved in disease processes.
**To understand the actual importance of this compound, you'd need further information:**
* **What is its specific biological activity?** Does it exhibit any potential therapeutic properties?
* **How is it synthesized?** What are the yields and purity of the synthetic process?
* **What studies have been conducted with this compound?** Are there any published papers or patents related to it?
Without this context, it's impossible to say definitively why this particular compound is important for research.
ID Source | ID |
---|---|
PubMed CID | 2205070 |
CHEMBL ID | 1607584 |
CHEBI ID | 121192 |
Synonym |
---|
STK456100 |
n-(4-bromo-2-chlorophenyl)-2-(pyridin-4-ylcarbonyl)hydrazinecarbothioamide |
smr000199735 |
n-(4-bromo-2-chlorophenyl)-2-isonicotinoylhydrazinecarbothioamide |
MLS000580203 |
CHEBI:121192 |
AKOS003323725 |
1-(4-bromo-2-chlorophenyl)-3-(pyridine-4-carbonylamino)thiourea |
HMS2539D17 |
CHEMBL1607584 |
1-(4-bromo-2-chlorophenyl)-3-[[oxo(pyridin-4-yl)methyl]amino]thiourea |
Q27209684 |
sr-01000275295 |
SR-01000275295-1 |
Class | Description |
---|---|
pyridinecarboxamide | A member of the class of pyridines that is a substituted pyridine in which at least one of the substituents is a carboxamide or N-substituted caraboxamide group. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, JmjC domain-containing histone demethylation protein 3A | Homo sapiens (human) | Potency | 56.2341 | 0.6310 | 35.7641 | 100.0000 | AID504339 |
GLS protein | Homo sapiens (human) | Potency | 11.2202 | 0.3548 | 7.9355 | 39.8107 | AID624170 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 15.8489 | 0.1800 | 13.5574 | 39.8107 | AID1460 |
apical membrane antigen 1, AMA1 | Plasmodium falciparum 3D7 | Potency | 1.2589 | 0.7079 | 12.1943 | 39.8107 | AID720542 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 17.7828 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 31.6228 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
lysosomal alpha-glucosidase preproprotein | Homo sapiens (human) | Potency | 31.6228 | 0.0366 | 19.6376 | 50.1187 | AID2100 |
serine/threonine-protein kinase PLK1 | Homo sapiens (human) | Potency | 23.7781 | 0.1683 | 16.4040 | 67.0158 | AID720504 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 89.1251 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 19.9526 | 0.0079 | 8.2332 | 1,122.0200 | AID2546 |
muscleblind-like protein 1 isoform 1 | Homo sapiens (human) | Potency | 28.1838 | 0.0041 | 9.9625 | 28.1838 | AID2675 |
histone acetyltransferase KAT2A isoform 1 | Homo sapiens (human) | Potency | 39.8107 | 0.2512 | 15.8432 | 39.8107 | AID504327 |
TAR DNA-binding protein 43 | Homo sapiens (human) | Potency | 8.9125 | 1.7783 | 16.2081 | 35.4813 | AID652104 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
polyadenylate-binding protein 1 | Homo sapiens (human) | IC50 (µMol) | 66.0000 | 4.9100 | 23.7029 | 76.1900 | AID602259; AID602260 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
RNA polymerase II cis-regulatory region sequence-specific DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
double-stranded DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
RNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
mRNA 3'-UTR binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
protein binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
lipid binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
identical protein binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
pre-mRNA intronic binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
molecular condensate scaffold activity | TAR DNA-binding protein 43 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
intracellular non-membrane-bounded organelle | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleus | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleoplasm | TAR DNA-binding protein 43 | Homo sapiens (human) |
perichromatin fibrils | TAR DNA-binding protein 43 | Homo sapiens (human) |
mitochondrion | TAR DNA-binding protein 43 | Homo sapiens (human) |
cytoplasmic stress granule | TAR DNA-binding protein 43 | Homo sapiens (human) |
nuclear speck | TAR DNA-binding protein 43 | Homo sapiens (human) |
interchromatin granule | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleoplasm | TAR DNA-binding protein 43 | Homo sapiens (human) |
chromatin | TAR DNA-binding protein 43 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |